Enhancer Control of Transcriptional Bursting

نویسندگان

  • Takashi Fukaya
  • Bomyi Lim
  • Michael Levine
چکیده

Transcription is episodic, consisting of a series of discontinuous bursts. Using live-imaging methods and quantitative analysis, we examine transcriptional bursting in living Drosophila embryos. Different developmental enhancers positioned downstream of synthetic reporter genes produce transcriptional bursts with similar amplitudes and duration but generate very different bursting frequencies, with strong enhancers producing more bursts than weak enhancers. Insertion of an insulator reduces the number of bursts and the corresponding level of gene expression, suggesting that enhancer regulation of bursting frequency is a key parameter of gene control in development. We also show that linked reporter genes exhibit coordinated bursting profiles when regulated by a shared enhancer, challenging conventional models of enhancer-promoter looping.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping.

Mammalian genes transcribe RNA not continuously, but in bursts. Transcriptional output can be modulated by altering burst fraction or burst size, but how regulatory elements control bursting parameters remains unclear. Single-molecule RNA FISH experiments revealed that the β-globin enhancer (LCR) predominantly augments transcriptional burst fraction of the β-globin gene with modest stimulation ...

متن کامل

A Phase Separation Model for Transcriptional Control

Phase-separated multi-molecular assemblies provide a general regulatory mechanism to compartmentalize biochemical reactions within cells. We propose that a phase separation model explains established and recently described features of transcriptional control. These features include the formation of super-enhancers, the sensitivity of super-enhancers to perturbation, the transcriptional bursting...

متن کامل

Diverse spatial expression patterns emerge from common transcription bursting kinetics

In early development, regulation of transcription results in precisely positioned and highly reproducible expression patterns that specify cellular identities. How transcription, a fundamentally noisy molecular process, is regulated to achieve reliable embryonic patterning remains unclear. In particular, it is unknown how gene-specific regulation mechanisms affect kinetic rates of transcription...

متن کامل

Transcriptional bursting is intrinsically caused by interplay between RNA polymerases on DNA

Cell-to-cell variability plays a critical role in cellular responses and decision-making in a population, and transcriptional bursting has been broadly studied by experimental and theoretical approaches as the potential source of cell-to-cell variability. Although molecular mechanisms of transcriptional bursting have been proposed, there is little consensus. An unsolved key question is whether ...

متن کامل

Stochastic steady state gain in a gene expression process with mRNA degradation control.

Recent analyses with high-resolution single-molecule experimental methods have shown highly irregular and variable bursting of mRNA in a wide range of organisms. Noise in gene expression is thought to be beneficial in cell fate specifications, as it can lay a foundation for phenotypic diversification of isogenetic cells in the homogeneous environment. However, because the stability of proteins ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 166  شماره 

صفحات  -

تاریخ انتشار 2016